博客
关于我
MyBatis学习总结(28)—— MyBatis-Plus 实战技巧总结
阅读量:799 次
发布时间:2023-02-09

本文共 904 字,大约阅读时间需要 3 分钟。

数据库查询优化实践指南

一、避免使用 isNull 判断

在数据库查询优化中,避免使用 isNull 判断非常重要。尽管这种判断看似简单,但它可能对数据库性能产生显著影响。

为什么要避免使用 isNull 判断?

  • 影响索引效率

    使用 isNull 会导致索引失效,因为MySQL无法利用索引进行优化。

  • 增加CPU开销

    isNull 比较需要额外处理逻辑,增加了数据库的计算负担。

  • 占用额外存储空间

    NULL 值会占用更多的存储空间,影响数据压缩效率。

  • 推荐实践

    使用 LambdaQueryWrapper 时,直接指定具体的默认值。例如:

    LambdaQueryWrapper wrapper2 = new LambdaQueryWrapper();
    wrapper2.eq(User::getStatus, UserStatusEnum.INACTIVE.getCode());

    这种方式不仅提高了代码的可读性,还能有效避免潜在的性能问题。


    二、明确 Select 字段

    在数据库查询中,明确指定需要查询的字段是优化数据库性能的重要手段。默认情况下,查询所有字段可能会引起不必要的数据传输和资源消耗。

    为什么要明确 Select 字段?

  • 减少数据传输量

    明确指定需要的字段可以减少数据库返回的数据量,从而提高网络传输效率。

  • 提升查询效率

    指定字段可以让数据库优化器更高效地执行查询,减少索引扫描的范围。

  • 降低冗余操作

    避免了不必要的字段读取和处理,减少了应用程序的负担。

  • 推荐实践

    使用 LambdaQueryWrapper 指定需要的字段。例如:

    users1 = userMapper.selectList(new LambdaQueryWrapper<>());
    // 推荐使用:
    users2 = userMapper.selectList(new LambdaQueryWrapper().select(User::getUsername, User::getStatus));

    通过指定特定的字段,可以显著提升查询性能。


    通过以上实践,可以显著优化数据库查询性能,同时提高代码的可读性和维护性。

    转载地址:http://dyffk.baihongyu.com/

    你可能感兴趣的文章
    Numpy.ndarray对象不可调用
    查看>>
    Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
    查看>>
    Numpy:按多个条件过滤行?
    查看>>
    Numpy:条件总和
    查看>>
    numpy、cv2等操作图片基本操作
    查看>>
    numpy中的argsort的用法
    查看>>
    NumPy中的精度:比较数字时的问题
    查看>>
    numpy判断对应位置是否相等,all、any的使用
    查看>>
    Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
    查看>>
    Numpy如何使用np.umprod重写range函数中i的python
    查看>>
    numpy学习笔记3-array切片
    查看>>
    numpy数组替换其中的值(如1替换为255)
    查看>>
    numpy数组索引-ChatGPT4o作答
    查看>>
    numpy最大值和最大值索引
    查看>>
    NUMPY矢量化np.prod不能构造具有超过32个操作数的ufunc
    查看>>
    Numpy矩阵与通用函数
    查看>>
    numpy绘制热力图
    查看>>
    numpy转PIL 报错TypeError: Cannot handle this data type
    查看>>
    Numpy闯关100题,我闯了95关,你呢?
    查看>>
    nump模块
    查看>>